Riesci a mettere questo cerchio all’interno del rombo? Questo matematico ci spiega come fare

Se siete degli amanti dei giochi di enigmistica e vi piace tenere la mente in allenamento, la sfida di cui vi parleremo oggi fa proprio per voi! In apparenza questo enigma potrà sembrare irrisolvibile, ma prima di arrendervi subito, vi invitiamo a provare a dare almeno una risposta facendo qualche tentativo. Vi basterà prendere un sottobicchiere che avete in casa, procuratevi un foglio ed un paio di forbici. Sarete in grado di ottenere una forma circolare tramite un rombo più piccolo?

Ad un primo sguardo, la risposta istintiva è decisamente negativa, tuttavia un matematico dell’università di standforf, Tadashi Tokieda, è riuscito a dimostrare che piegando il foglio in maniera corretta, un cerchio può sicuramente entrare attraverso un foro di forma romboidale, anche se questo risulta essere molto più piccolo del cerchio.

Praticate un foro quadrato sul foglio di carta ed afferrate il sottobicchiere circolare, poi piegate la carta in modo alquanto misterioso e solo così riuscirete a farla passare attraverso il foro senza nessun problema.

Non si tratta affatto di barare utilizzando chissà quale espediente magico, il matematico Tokieda infatti non ha né allungato né strappato la carta, ha soltanto piegato il foglio nel modo giusto e, in men che non si dica, è riuscito a far passare il sottobicchiere attraverso il quadrato. Ma come è possibile tutto ciò?

Vi forniremo qualche indizio: per risolvere l’arcano enigma bisogna tenere presente che tutto ciò ha a che fare con la dimensione interna del foglio, che è bidimensionale, e la sua evoluzione verso lo spazio tridimensionale dell’ambiente che lo circonda.

Questo era il primo indizio, ma c’è ancora molta confusione nell’aria, vero? Ecco a voi la risoluzione dell’enigma: In apparenza, mentre le due dimensioni del foro lo rendono troppo piccolo affinchè il sottobicchiere riesca a passare senza ostacoli, dovrà essere il foglio piegato in maniera corretta a trasformarsi in una forma tridimensionale, e per farlo bisogna piegarlo correttamente, vi basterà unire i lati del quadrato e così la fessura diventerà più ampia, permettendo così il passaggio del disco.

Il nuovo spazio creato dalla piega del foglio non è assolutamente la diagonale, ma rappresenta la somma dei due lati. Così facendo otteniamo uno spazio extra tale per cui il sottobicchiere passerà liberamente e senza sforzo alcuno dall’altro lato del foro.

Ma come ha fatto Tokieda? Lo ha detto in un intervista, ecco le sue parole riportate: “Tutto ciò è possibile perché, quando eseguiamo questa manovra, stiamo permettendo al tutto di uscire in 3D e poi di tornare indietro”, continua il matematico. “Questo atto di fuga nella terza dimensione ambientale e di ritorno è un viaggio che stai intraprendendo con un ulteriore grado di libertà, regalandoti questa meravigliosa magia”.

Sicuramente non si tratta di magia, il nostro geniale matematico ha applicato semplicemente le scoperte di Pitagora alla realtà, regalandoci qualcosa di semplicemente meraviglioso.

LEGGI ANCHE: Test dei colori! Riesci a trovare la tonalità di arancione differente?

Altri articoli che potrebbero interessarti dai siti del nostro Network: